

Computer Integrated Manufacturing Detailed Outline

Unit 1: Principles of Manufacturing Time Days: 32 days

Lesson 1.1: History of Manufacturing (8 days)

Concepts Addressed in Lesson

- Manufacturing is a series of interrelated activities and operations that involve product design, planning, producing, materials control, quality assurance, management, and marketing of that product.
- 2. Manufacturing is essential to a healthy economy, including jobs and attainment of personal goals.
- 3. National manufacturing avoids health risks that are accepted in other countries.
- 4. Many careers are associated with the area of manufacturing.
- 5. Different procedures are used in the creation of products.

Performance Objectives

It is expected that students will:

- Explore manufacturing through research and projects.
- Understand what the enterprise wheel represents and how it represents the overall manufacturing scheme.
- Research a topic in manufacturing, develop a presentation, and present findings to a group.
- Explain the different procedures used in manufacturing.

Lesson 1.2: Control Systems (10 days)

Concepts Addressed in Lesson

 Flowcharting is a powerful graphical organizer used by technicians, computer programmers, engineers, and professionals in a variety of roles and responsibilities.

- 2. During the design and development process, flowcharting is used to plan and depict the process flow for an entire system and all of its subsystems.
- 3. Computer programmers use flowcharting symbols to graphically organize the flow of program control, including all inputs, outputs, and conditions that may occur.
- 4. Everyday products including cars, microwaves, ovens, hair dryers, coffee pots, and washing machines all use control systems to manage their operation.

Performance Objectives

It is expected that students will:

- Identify basic flowcharting symbols and discuss their functions.
- Create a flowchart that portrays a manufacturing process.
- Apply flowcharting to areas other than manufacturing.
- Identify a control system and explain its application to manufacturing.
- Model and create a program to control an automated system.

Lesson 1.3: The Cost of Manufacturing (14 days)

Concepts Addressed in Lesson

- 1. When designing a control system, cost and safety are two key factors that must be considered.
- 2. Many factors come into play when calculating the cost of manufacturing a product.
- 3. Tradeoffs may be made between hiring highly skilled or experienced workers and keeping costs down.
- 4. The less time a part takes to make, the more potential profit is available.
- 5. Long term planning and investments may cost more up front but may provide additional savings in the future.

Performance Objectives

- Create a control system that replicates a factory cell.
- Maximize the efficiency of the manufacturing system with respect to time and cost.
- Compare the efficiency of running multiple systems against that of one large system.

Unit 2: Manufacturing Processes Time Days: 54 days

Lesson 2.1: Designing for Manufacturability (10 days)

Concepts Addressed in Lesson

- 1. Design is a process that is used to systematically solve problems.
- 2. Many considerations must be made when manufacturing a quality part.
- 3. Material properties must be considered as part of the design process.
- 4. Manufacturers have an ethical responsibility to create safe products and to provide a safe work environment.
- 5. Manufacturers have a legal responsibility to provide safety information about their products.
- 6. Many engineering disciplines have a code of conduct or code of ethics that their members are expected to follow.
- 7. Analyzing case studies of engineering failures is a good way for engineers to avoid future failures.

Performance Objectives

It is expected that students will:

- Use the design process.
- Use knowledge of design to analyze products with flaws.
- Use calculated volume, mass, surface area of parts to determine material cost, waste, and packaging requirements.
- Use solid modeling software to improve a flawed design.
- Determine whether a product is safe for a given audience (e.g., children under the age of three).
- Make ethical decisions about manufacturing.
- Create a product using solid modeling software.

Lesson 2.2: How We Make Things (6 days)

Concepts Addressed in Lesson

- 1. Prototyping is part of a design process where a physical model can be evaluated to refine the design.
- 2. Before raw material can be used in manufacturing, it must undergo primary processing.

- 3. The separating process is one of the oldest manufacturing processes.
- 4. Milling and shearing utilize the subtractive process to create products.
- 5. ECM, EDM, water-, and laser-cutting are using newer technologies to enhance the accuracy and efficiency of material removal.
- 6. Metals, plastics, and ceramics are types of materials that are well suited to the manufacturing process.
- 7. The way in which a product is made is dependent upon the properties of the material that will be used.

Performance Objectives

It is expected that students will:

- Explain the difference between primary and secondary manufacturing processes.
- Analyze a product to propose the manufacturing processes used to create it.
- Explore manufacturing processes via research.
- Explore prototyping processes.

Lesson 2.3: Product Development (38 days)

Concepts Addressed in Lesson

- 1. Many machines exist to perform manufacturing processes.
- 2. Machine code is an essential tool used to communicate with some machines.
- 3. Jigs and fixtures are essential in maintaining consistency and quality control.
- 4. Computer Aided Manufacturing (CAM) programming tools make it possible to manufacture physical models using Computer Aided Design (CAD) programs.
- 5. Products manufactured today have been greatly influenced by the advancement of machines and technology.
- 6. Several variables in machining operations affect the final product in manufacturing.
- 7. Profit margins are essential to a company's survival in a competitive market.
- 8. Prototyping is a major step in the design cycle of manufactured goods and has been greatly advanced with the advent and use of rapid prototyping processes.

Performance Objectives

- Identify machines when given a process and identify the process that a given machine performs.
- Determine the appropriate speed rate for a given material using a tool with a given diameter.
- Determine the feed rate for a given material using a tool with a given diameter.
- Read and interpret G & M codes.
- Transfer the drawings made in CAD to a CAM program.
- Create numerical code using a CAM program.
- Verify the creation of a part using a simulation software.
- Create parts using the machines demonstrated by the instructor.
- Create a product on the computer using knowledge of manufacturing processes.

Unit 3: Elements of Automation

Lesson 3.1: Introduction to Automation (19 Days)

Concepts Addressed in Lesson

- 1. Many factors have influenced the evolution of automation.
- 2. A variety of automation careers exist.
- 3. Robots are widely used in industry to assist in the production of manufactured goods.
- 4. Robots have distinct advantages over humans in some industrial settings (e.g., hazardous environments, repetitive motion or long hours).
- 5. Robots and machines communicate and coordinate their activities through a process called handshaking.

Performance Objectives

- Research a topic in automation.
- Explore automation careers.
- Identify the advantages and disadvantages of robotic labor versus human labor.
- Explore materials handling.
- Create and program virtual robotic work cells with simulation software.
- Program the interface between a robot and another machine.

Lesson 3.2: Elements of Power (10 Days)

Concepts Addressed in Lesson

- 1. Power is produced in many ways and transmitted through various forms (e.g. electrical, pneumatic, hydraulic, and motion).
- 2. Fluid power is inversely proportional to the area upon which the force is being applied.
- 3. Sensors provide feedback to control systems and products used by consumers.
- 4. Pneumatics is one form of fluid power that can be used to operate machines and products.

Performance Objectives

It is expected that students will:

- Identify the three main power types.
- Solve problems involving electrical, pneumatic, and mechanical power.
- Convert power between units.
- Calculate torque and use it to calculate power.
- Solve problems involving fluid power.
- Construct a system to convert pneumatic power into mechanical power.

Lesson 3.3: Robotic Programming and Usage (17 Days)

Concepts Addressed in Lesson

- 1. Basic programming skills include variable declaration, loops, and debugging.
- 2. A variety of robots and unique programming languages are used in the manufacturing industry.
- 3. Many everyday products use microcontrollers.
- 4. Robots are used to perform diverse functions and work in diverse environments.
- 5. The size of a robot is based on the work envelope and payload needed to perform the task.

Performance Objectives

- Build the Lynxmotion robot if the robots are not already built.
- Learn the programming language needed to operate the Lynx robot.

- Create programs using robotic software that will allow the robot to perform a set of tasks.
- Configure servo motors to operate the Lynxmotion robot.
- Formulate a list of tasks in which the robot used in class can be used in a large scale CIM cell operation.

Unit 4: Integration of Manufacturing Elements Time: 47 Days

Lesson 4.1: Integration of Manufacturing Elements (10 Days)

Concepts Addressed in Lesson

- 1. The process of mass production is used when the same product is created repeatedly.
- 2. A workcell is a group of machines in which each individual machine has its own specialty.
- 3. A flexible manufacturing system is one that can adapt to a wide variety of products.
- 4. Tradeoffs are made when one system is utilized over another.
- Process flow design has a major impact on overall production time and product profit.
- 6. During the design and development process, flowcharting is used to plan and depict the detailed process flow for an entire system and all of its subsystems.
- 7. Flowcharting can be used to illustrate the phases of the product development process.
- 8. Manufacturing and automation careers are varied in scope and location.

Performance Objectives

- Identify the three categories of CIM systems.
- Compare and contrast the benefits and drawbacks of the three categories of CIM systems.
- Identify the components of an FMS.
- Create a process design chart for a manufacturing process.
- Students will explore a manufacturing or automation career of interest and determine the appropriateness and steps required to be a professional in that role.

Lesson 4.2: Manufacturing Application (37 Days)

Concepts Addressed in Lesson

- 1. Process flow design has a major impact on overall production time and product profit.
- During the design and development process, flowcharting is used to plan and depict the detailed process flow for an entire system as well as all of its subsystems.
- 3. Flowcharting can be used to illustrate the overall phases of the product development process.
- 4. Safe operating procedures must be addressed in a CIM environment at all times to avoid serious injury.
- 5. Tradeoffs occur between efficiency and cost when choosing a manufacturing system.
- 6. Engineers choose appropriate sensors to ensure high quality part production.
- 7. Proper sequencing of automated operations is important in factory design.
- 8. Identification of correct electrical and fluid power systems is required to complete the desired manufacturing system.

Performance Objectives

- Identify the potential safety issues with a CIM system and identify solutions for these problems.
- Understand the significance of teamwork and communication.
- Design a manufacturing system that contains at least two automated components.
- Complete the construction of each individual component of the miniature FMS and verify that each component works.
- Assemble components into a working miniature FMS.
- Refine each component to improve the total process flow and cycle time.
- Start and maintain a journal that documents daily work.